Actinium

From Role Players Resource

{{#switch: | | User | User talk

| Template =

| #default = {{{{#if:|subst:}}Top icon{{#if:| |{{{2}}} }}{{#if:| |{{{3}}} }}{{#if:| |{{{4}}} }}{{#if:| |{{{5}}} }}{{#if:| |{{{6}}} }}{{#if:| |{{{7}}} }}{{#if:| |{{{8}}} }}{{#if:| |{{{9}}} }}{{#if:| |{{{10}}} }}{{#if:| |{{{11}}} }}{{#if:| |... }}}} cannot be used outside of the User, Template, or User talk namespaces. {{#ifeq:||Try {{{{#if:|subst:}}Spoken Wikipedia{{#if:| |{{{2}}} }}{{#if:| |{{{3}}} }}{{#if:| |{{{4}}} }}{{#if:| |{{{5}}} }}{{#if:| |{{{6}}} }}{{#if:| |{{{7}}} }}{{#if:| |{{{8}}} }}{{#if:| |{{{9}}} }}{{#if:| |{{{10}}} }}{{#if:| |{{{11}}} }}{{#if:| |... }}}} or {{{{#if:|subst:}}Featured article{{#if:| |{{{2}}} }}{{#if:| |{{{3}}} }}{{#if:| |{{{4}}} }}{{#if:| |{{{5}}} }}{{#if:| |{{{6}}} }}{{#if:| |{{{7}}} }}{{#if:| |{{{8}}} }}{{#if:| |{{{9}}} }}{{#if:| |{{{10}}} }}{{#if:| |{{{11}}} }}{{#if:| |... }}}} instead.}}}}{{#ifeq:||}}

{{#if: silvery-white| {{#if:Template:IPAc-en
Template:Respell| {{#if:actinidesometimes considered a transition metal| {{#if:| {{#if:| {{#if:| {{#if:| {{#if:| {{#if:| {{#if:| {{#if:| {{#if:solid| {{#if:| }} {{#if:10| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:(circa) 132310501922| }} {{#if:| }} {{#if:347131985788| }} {{#if:| }} {{#if:| }} {{#if:14| }} {{#if:| }} {{#if:400| }} {{#if:27.2| }} {{#if:| }} {{#if:| }} {{#if:| {{#if:| {{#if:3| }} {{#if:1.1| }} {{#if:2|{{#switch:2 }} {{#if:| }} {{#if:| }} {{#if:215| }} {{#if:| {{#if:7440-34-8| }} {{#if:face-centered cubic| {{#if:| {{#if:no data| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:12| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:| }} {{#if:7440-34-8| }} {{#if:| {{#if:Template:Elementbox isotopes decayTemplate:Elementbox isotopes decay3Template:Elementbox isotopes decay2|
colspan=2 style="font-size:130%; text-align:center; background-color:#{{#if:{{#switch:actinide alkali metals=FF6666 alkaline earth metals=FFDEAD lanthanides=FFBFFF actinides=FF99CC transition metals=FFC0C0 poor metals=CCCCCC post-transition metal=CCCCCC other metal=CCCCCC metalloids=CCCC99 non-metal|nonmetals|non-metals=A0FFA0 halogens=FFFF99 noble gases=C0FFFF superactinide = D1DDFF eka-superactinide = C6DD9D unknown=E8E8E8

}} }}; color:#{{#if:||{{#switch:solid

gas=008000 liquid=0000FF solid=000000

}} }};" | {{#if:actinium|actinium|Actinium}}

89{{#switch:Ac|#default=Ac|Nt [not official]=Nt}}
La

Ac

(Ute)
31|30}} style="border:none" |
25|24}} style="border:none" |
25|24}} style="border:none" |
15|14}} style="border:none" |
style="border:none; width:6px; min-width:6px;" | style="border:none; width:0;" }} | 14|13}} style="border:none" |

{{#ifexpr:89>118|

}}

{{#ifexpr:89>118|

}}

118|transition metal (predicted)|unknown chemical properties}}
actinoid = #ff99cc alkali metal = #ff6666 alkali metal (predicted) = #d8bcbc alkaline earth metal = #ffdead alkaline earth metal (predicted) = #ffecd3 eka-superactinide = #a0e032 eka-superactinide (predicted) = #c6dd9d noble gas = #c0ffff noble gas (predicted) = #ddffff halogen = #ffff99 halogen (predicted) = #ffffd6 metalloid = #cccc99 metalloid (predicted) = #e2e2aa lanthanoid = #ffbfff other non-metal = #a0ffa0 other non-metal (predicted) = #d3ffd3 post-transition metal = #cccccc post-transition metal (predicted) = #dfdfdf superactinide = #b5c8ff superactinide (predicted) = #d1ddff transition metal = #ffc0c0 transition metal (predicted) = #ffe2e2 unknown chemical properties = #e8e8e8 #default = #000000;

}}; {{#ifexpr:{{#ifeq:|{{#ifexpr:89>118|transition metal (predicted)|unknown chemical properties}}|1|0}}{{#ifeq:|9|1|0}}{{#ifeq:Actinium| {{#switch:

 {{#if:
{{{demospace}}} Template template other
   }}
 }}
template = Infobox meitnerium other #default = Meitnerium }}|1|0}}| border:1px solid black; margin:-1px;}}">File:Transparent.gif
118|transition metal (predicted)|unknown chemical properties}}
actinoid = #ff99cc alkali metal = #ff6666 alkali metal (predicted) = #d8bcbc alkaline earth metal = #ffdead alkaline earth metal (predicted) = #ffecd3 eka-superactinide = #a0e032 eka-superactinide (predicted) = #c6dd9d noble gas = #c0ffff noble gas (predicted) = #ddffff halogen = #ffff99 halogen (predicted) = #ffffd6 metalloid = #cccc99 metalloid (predicted) = #e2e2aa lanthanoid = #ffbfff other non-metal = #a0ffa0 other non-metal (predicted) = #d3ffd3 post-transition metal = #cccccc post-transition metal (predicted) = #dfdfdf superactinide = #b5c8ff superactinide (predicted) = #d1ddff transition metal = #ffc0c0 transition metal (predicted) = #ffe2e2 unknown chemical properties = #e8e8e8 #default = #000000;

}}; {{#ifexpr:{{#ifeq:|{{#ifexpr:89>118|transition metal (predicted)|unknown chemical properties}}|1|0}}{{#ifeq:|10|1|0}}{{#ifeq:Actinium| {{#switch:

 {{#if:
{{{demospace}}} Template template other
   }}
 }}
template = Infobox darmstadtium other #default = Darmstadtium }}|1|0}}| border:1px solid black; margin:-1px;}}">File:Transparent.gif
118|transition metal (predicted)|unknown chemical properties}}
actinoid = #ff99cc alkali metal = #ff6666 alkali metal (predicted) = #d8bcbc alkaline earth metal = #ffdead alkaline earth metal (predicted) = #ffecd3 eka-superactinide = #a0e032 eka-superactinide (predicted) = #c6dd9d noble gas = #c0ffff noble gas (predicted) = #ddffff halogen = #ffff99 halogen (predicted) = #ffffd6 metalloid = #cccc99 metalloid (predicted) = #e2e2aa lanthanoid = #ffbfff other non-metal = #a0ffa0 other non-metal (predicted) = #d3ffd3 post-transition metal = #cccccc post-transition metal (predicted) = #dfdfdf superactinide = #b5c8ff superactinide (predicted) = #d1ddff transition metal = #ffc0c0 transition metal (predicted) = #ffe2e2 unknown chemical properties = #e8e8e8 #default = #000000;

}}; {{#ifexpr:{{#ifeq:|{{#ifexpr:89>118|transition metal (predicted)|unknown chemical properties}}|1|0}}{{#ifeq:|11|1|0}}{{#ifeq:Actinium| {{#switch:

 {{#if:
{{{demospace}}} Template template other
   }}
 }}
template = Infobox roentgenium other #default = Roentgenium }}|1|0}}| border:1px solid black; margin:-1px;}}">File:Transparent.gif
118|post-transition metal (predicted)|unknown chemical properties}}
actinoid = #ff99cc alkali metal = #ff6666 alkali metal (predicted) = #d8bcbc alkaline earth metal = #ffdead alkaline earth metal (predicted) = #ffecd3 eka-superactinide = #a0e032 eka-superactinide (predicted) = #c6dd9d noble gas = #c0ffff noble gas (predicted) = #ddffff halogen = #ffff99 halogen (predicted) = #ffffd6 metalloid = #cccc99 metalloid (predicted) = #e2e2aa lanthanoid = #ffbfff other non-metal = #a0ffa0 other non-metal (predicted) = #d3ffd3 post-transition metal = #cccccc post-transition metal (predicted) = #dfdfdf superactinide = #b5c8ff superactinide (predicted) = #d1ddff transition metal = #ffc0c0 transition metal (predicted) = #ffe2e2 unknown chemical properties = #e8e8e8 #default = #000000;

}}; {{#ifexpr:{{#ifeq:|{{#ifexpr:89>118|post-transition metal (predicted)|unknown chemical properties}}|1|0}}{{#ifeq:|13|1|0}}{{#ifeq:Actinium| {{#switch:

 {{#if:
{{{demospace}}} Template template other
   }}
 }}
template = Infobox ununtrium other #default = Ununtrium }}|1|0}}| border:1px solid black; margin:-1px;}}">File:Transparent.gif
118|post-transition metal (predicted)|unknown chemical properties}}
actinoid = #ff99cc alkali metal = #ff6666 alkali metal (predicted) = #d8bcbc alkaline earth metal = #ffdead alkaline earth metal (predicted) = #ffecd3 eka-superactinide = #a0e032 eka-superactinide (predicted) = #c6dd9d noble gas = #c0ffff noble gas (predicted) = #ddffff halogen = #ffff99 halogen (predicted) = #ffffd6 metalloid = #cccc99 metalloid (predicted) = #e2e2aa lanthanoid = #ffbfff other non-metal = #a0ffa0 other non-metal (predicted) = #d3ffd3 post-transition metal = #cccccc post-transition metal (predicted) = #dfdfdf superactinide = #b5c8ff superactinide (predicted) = #d1ddff transition metal = #ffc0c0 transition metal (predicted) = #ffe2e2 unknown chemical properties = #e8e8e8 #default = #000000;

}}; {{#ifexpr:{{#ifeq:|{{#ifexpr:89>118|post-transition metal (predicted)|unknown chemical properties}}|1|0}}{{#ifeq:|14|1|0}}{{#ifeq:Actinium| {{#switch:

 {{#if:
{{{demospace}}} Template template other
   }}
 }}
template = Infobox flerovium other #default = Flerovium }}|1|0}}| border:1px solid black; margin:-1px;}}">File:Transparent.gif
118|post-transition metal (predicted)|unknown chemical properties}}
actinoid = #ff99cc alkali metal = #ff6666 alkali metal (predicted) = #d8bcbc alkaline earth metal = #ffdead alkaline earth metal (predicted) = #ffecd3 eka-superactinide = #a0e032 eka-superactinide (predicted) = #c6dd9d noble gas = #c0ffff noble gas (predicted) = #ddffff halogen = #ffff99 halogen (predicted) = #ffffd6 metalloid = #cccc99 metalloid (predicted) = #e2e2aa lanthanoid = #ffbfff other non-metal = #a0ffa0 other non-metal (predicted) = #d3ffd3 post-transition metal = #cccccc post-transition metal (predicted) = #dfdfdf superactinide = #b5c8ff superactinide (predicted) = #d1ddff transition metal = #ffc0c0 transition metal (predicted) = #ffe2e2 unknown chemical properties = #e8e8e8 #default = #000000;

}}; {{#ifexpr:{{#ifeq:|{{#ifexpr:89>118|post-transition metal (predicted)|unknown chemical properties}}|1|0}}{{#ifeq:|15|1|0}}{{#ifeq:Actinium| {{#switch:

 {{#if:
{{{demospace}}} Template template other
   }}
 }}
template = Infobox ununpentium other #default = Ununpentium }}|1|0}}| border:1px solid black; margin:-1px;}}">File:Transparent.gif
118|post-transition metal (predicted)|unknown chemical properties}}
actinoid = #ff99cc alkali metal = #ff6666 alkali metal (predicted) = #d8bcbc alkaline earth metal = #ffdead alkaline earth metal (predicted) = #ffecd3 eka-superactinide = #a0e032 eka-superactinide (predicted) = #c6dd9d noble gas = #c0ffff noble gas (predicted) = #ddffff halogen = #ffff99 halogen (predicted) = #ffffd6 metalloid = #cccc99 metalloid (predicted) = #e2e2aa lanthanoid = #ffbfff other non-metal = #a0ffa0 other non-metal (predicted) = #d3ffd3 post-transition metal = #cccccc post-transition metal (predicted) = #dfdfdf superactinide = #b5c8ff superactinide (predicted) = #d1ddff transition metal = #ffc0c0 transition metal (predicted) = #ffe2e2 unknown chemical properties = #e8e8e8 #default = #000000;

}}; {{#ifexpr:{{#ifeq:|{{#ifexpr:89>118|post-transition metal (predicted)|unknown chemical properties}}|1|0}}{{#ifeq:|16|1|0}}{{#ifeq:Actinium| {{#switch:

 {{#if:
{{{demospace}}} Template template other
   }}
 }}
template = Infobox livermorium other #default = Livermorium }}|1|0}}| border:1px solid black; margin:-1px;}}">File:Transparent.gif
118|halogen (predicted)|unknown chemical properties}}
actinoid = #ff99cc alkali metal = #ff6666 alkali metal (predicted) = #d8bcbc alkaline earth metal = #ffdead alkaline earth metal (predicted) = #ffecd3 eka-superactinide = #a0e032 eka-superactinide (predicted) = #c6dd9d noble gas = #c0ffff noble gas (predicted) = #ddffff halogen = #ffff99 halogen (predicted) = #ffffd6 metalloid = #cccc99 metalloid (predicted) = #e2e2aa lanthanoid = #ffbfff other non-metal = #a0ffa0 other non-metal (predicted) = #d3ffd3 post-transition metal = #cccccc post-transition metal (predicted) = #dfdfdf superactinide = #b5c8ff superactinide (predicted) = #d1ddff transition metal = #ffc0c0 transition metal (predicted) = #ffe2e2 unknown chemical properties = #e8e8e8 #default = #000000;

}}; {{#ifexpr:{{#ifeq:|{{#ifexpr:89>118|halogen (predicted)|unknown chemical properties}}|1|0}}{{#ifeq:|-1|1|0}}{{#ifeq:Actinium| {{#switch:

 {{#if:
{{{demospace}}} Template template other
   }}
 }}
template = Infobox ununseptium other #default = Ununseptium }}|1|0}}| border:1px solid black; margin:-1px;}}">File:Transparent.gif
118|noble gas (predicted)|unknown chemical properties}}
actinoid = #ff99cc alkali metal = #ff6666 alkali metal (predicted) = #d8bcbc alkaline earth metal = #ffdead alkaline earth metal (predicted) = #ffecd3 eka-superactinide = #a0e032 eka-superactinide (predicted) = #c6dd9d noble gas = #c0ffff noble gas (predicted) = #ddffff halogen = #ffff99 halogen (predicted) = #ffffd6 metalloid = #cccc99 metalloid (predicted) = #e2e2aa lanthanoid = #ffbfff other non-metal = #a0ffa0 other non-metal (predicted) = #d3ffd3 post-transition metal = #cccccc post-transition metal (predicted) = #dfdfdf superactinide = #b5c8ff superactinide (predicted) = #d1ddff transition metal = #ffc0c0 transition metal (predicted) = #ffe2e2 unknown chemical properties = #e8e8e8 #default = #000000;

}}; {{#ifexpr:{{#ifeq:|{{#ifexpr:89>118|noble gas (predicted)|unknown chemical properties}}|1|0}}{{#ifeq:|-1|1|0}}{{#ifeq:Actinium| {{#switch:

 {{#if:
{{{demospace}}} Template template other
   }}
 }}
template = Infobox ununoctium other #default = Ununoctium }}|1|0}}| border:1px solid black; margin:-1px;}}">File:Transparent.gif

{{#ifexpr:89>118|Template:NavPeriodicTable/119+}}

radium[[{{#ifeq:Ac|Hg|Mercury (element)|}}{{#if:actinium|actinium|Actinium}}]]thorium
colspan=2 style="text-align:center; background-color:#{{#if:{{#switch:actinide alkali metals=FF6666 alkaline earth metals=FFDEAD lanthanides=FFBFFF actinides=FF99CC transition metals=FFC0C0 poor metals=CCCCCC post-transition metal=CCCCCC other metal=CCCCCC metalloids=CCCC99 non-metal|nonmetals|non-metals=A0FFA0 halogens=FFFF99 noble gases=C0FFFF superactinide = D1DDFF eka-superactinide = C6DD9D unknown=E8E8E8

}} }}; color:#{{#if:||{{#switch:solid

gas=008000 liquid=0000FF solid=000000

}} }};" | Appearance

silvery-white{{#if:|{{#if:silvery-white|
}}[[file:|{{#if:|{{{image size}}}|250px}}|alt=]]|}}{{#if:|
|}}{{#if:|
[[file:|{{#if:
alt=]]|}}{{#if:|
|}}

}}

colspan=2 style="text-align:center; background-color:#{{#if:{{#switch:actinide alkali metals=FF6666 alkaline earth metals=FFDEAD lanthanides=FFBFFF actinides=FF99CC transition metals=FFC0C0 poor metals=CCCCCC post-transition metal=CCCCCC other metal=CCCCCC metalloids=CCCC99 non-metal|nonmetals|non-metals=A0FFA0 halogens=FFFF99 noble gases=C0FFFF superactinide = D1DDFF eka-superactinide = C6DD9D unknown=E8E8E8

}} }}; color:#{{#if:||{{#switch:solid

gas=008000 liquid=0000FF solid=000000

}} }};" | General properties

Name, symbol, number actinium, Ac, 89
Pronunciation Template:IPAc-en
Template:Respell

}}

Element category noble gas|actinidees|{{#ifeq: actinide|unknown|unknown|actinide}}}}{{#if:|, {{{series 2}}}}}

}}{{#if:sometimes considered a transition metal| {{#if:actinide |
|}}sometimes considered a transition metal }}

Group, period, block lanthanide|lanthanides|actinide|actinides=n/a,  |3, }}7, f
Standard atomic weight {{#if:()}}}}
Electron configuration [Rn] 6d1 7s2
2, 8, 18, 32, 18, 9, 2 {{#ifexist: Media:Electron shell 089 Actinium - no label.svg | |}}
colspan=2 style="text-align:center; background-color:#{{#if:{{#switch:actinide alkali metals=FF6666 alkaline earth metals=FFDEAD lanthanides=FFBFFF actinides=FF99CC transition metals=FFC0C0 poor metals=CCCCCC post-transition metal=CCCCCC other metal=CCCCCC metalloids=CCCC99 non-metal|nonmetals|non-metals=A0FFA0 halogens=FFFF99 noble gases=C0FFFF superactinide = D1DDFF eka-superactinide = C6DD9D unknown=E8E8E8

}} }}; color:#{{#if:||{{#switch:solid

gas=008000 liquid=0000FF solid=000000

}} }};" | History }}

Prediction Template:Nowrap }} }}
Discovery Template:Nowrap }} }}
First isolation Template:Nowrap }} }}
by}} Template:Nowrap }} }}
}}
colspan=2 style="text-align:center; background-color:#{{#if:{{#switch:actinide alkali metals=FF6666 alkaline earth metals=FFDEAD lanthanides=FFBFFF actinides=FF99CC transition metals=FFC0C0 poor metals=CCCCCC post-transition metal=CCCCCC other metal=CCCCCC metalloids=CCCC99 non-metal|nonmetals|non-metals=A0FFA0 halogens=FFFF99 noble gases=C0FFFF superactinide = D1DDFF eka-superactinide = C6DD9D unknown=E8E8E8

}} }}; color:#{{#if:||{{#switch:solid

gas=008000 liquid=0000FF solid=000000

}} }};" | Physical properties

}}

Template:Engvar

}}

Phase unknown|unknown|solid}}{{#if:|{{#if:solid| |}} }}

}}

Density (0 °C, 101.325 kPa)
g/L
Density (near r.t.) 10 g·cm−3
Density (near r.t.) {{{density gpcm3nrt 2}}} g·cm−3
Density (near r.t.) {{{density gpcm3nrt 3}}} g·cm−3
Liquid density at m.p. {{{density gpcm3mp}}} g·cm−3
Liquid density at b.p. {{{density gpcm3bp}}} g·cm−3
Melting point ({{{melting point pressure}}}) }}{{#if:(circa) 1323|(circa) 1323 K{{#if:10501922|, |}}|}}{{#if:1050|1050 °C{{#if:1922|, |}}|}}{{#if:1922|1922 °F|}}
Sublimation point ({{{sublimation point pressure}}}) }}{{#if:|{{{sublimation point K}}} K{{#if:|, |}}|}}{{#if:|{{{sublimation point C}}} °C{{#if:|, |}}|}}{{#if:|{{{sublimation point F}}} °F|}}
Boiling point ({{{boiling point pressure}}}) }}{{#if:3471|3471 K{{#if:31985788|, |}}|}}{{#if:3198|3198 °C{{#if:5788|, |}}|}}{{#if:5788|5788 °F|}}
Triple point  K ({{#expr: -273.16 round 0}}°C),  kPa
Critical point K, MPa
Heat of fusion ({{{heat fusion pressure}}}) }}14 kJ·mol−1
Heat of fusion ({{{heat fusion pressure}}}) }}{{{heat fusion 2}}} kJ·mol−1
[[Enthalpy of vaporization|Heat of Template:Engvar]] ({{{heat vaporization pressure}}}) }}400 kJ·mol−1
Molar heat capacity {{{heat capacity pressure}}}}} 27.2 J·mol−1·K−1
Molar heat capacity {{{heat capacity pressure}}}}} {{{heat capacity 2}}} J·mol−1·K−1
[[Vapor pressure|Template:Engvar pressure]]{{#if:| }}
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K)
[[Vapor pressure|Template:Engvar pressure]]{{#if:| {{{vapor pressure comment 2}}} }}
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K)            

}}

colspan=2 style="text-align:center; background-color:#{{#if:{{#switch:actinide alkali metals=FF6666 alkaline earth metals=FFDEAD lanthanides=FFBFFF actinides=FF99CC transition metals=FFC0C0 poor metals=CCCCCC post-transition metal=CCCCCC other metal=CCCCCC metalloids=CCCC99 non-metal|nonmetals|non-metals=A0FFA0 halogens=FFFF99 noble gases=C0FFFF superactinide = D1DDFF eka-superactinide = C6DD9D unknown=E8E8E8

}} }}; color:#{{#if:||{{#switch:solid

gas=008000 liquid=0000FF solid=000000

}} }};" | Atomic properties

}}

Oxidation states
(neutral oxide)}}
Electronegativity 1.1 (Pauling scale)
- [[ionization energy| Template:Engvar energies]] 1st: 499 kJ·mol−1 - [[ionization energy|Template:Engvar energies]] 1st: 499 kJ·mol−1
2nd: 1170 kJ·mol−1 - [[ionization energy|Template:Engvar energies]] 1st: 499 kJ·mol−1
2nd: 1170 kJ·mol−1
3rd: {{{3rd ionization energy}}} kJ·mol−1 5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|More|more=|- [[ionization energy|Template:Engvar energies]]
(more)
1st: 499 kJ·mol−1
2nd: 1170 kJ·mol−1
3rd: {{{3rd ionization energy}}} kJ·mol−1

}}

Atomic radius pm
Atomic radius (calc.) {{{atomic radius calculated}}} pm
Covalent radius 215 pm{{#if:|
{{{covalent radius comment}}}}}
Van der Waals radius pm

}}

colspan=2 style="text-align:center; background-color:#{{#if:{{#switch:actinide alkali metals=FF6666 alkaline earth metals=FFDEAD lanthanides=FFBFFF actinides=FF99CC transition metals=FFC0C0 poor metals=CCCCCC post-transition metal=CCCCCC other metal=CCCCCC metalloids=CCCC99 non-metal|nonmetals|non-metals=A0FFA0 halogens=FFFF99 noble gases=C0FFFF superactinide = D1DDFF eka-superactinide = C6DD9D unknown=E8E8E8

}} }}; color:#{{#if:||{{#switch:solid

gas=008000 liquid=0000FF solid=000000

}} }};" | Miscellanea

Crystal structure Template:Infobox element/crystal structure wikilink
{{#ifexist:Media:Template:Infobox element/crystal structure image| [[File:Template:Infobox element/crystal structure image|50px|Actinium has a face-centered cubic crystal structure]]}}
{{#if:|{{#if:face-centered cubic|
Template:Clear}}}}

}}

Template:Infobox element/crystal structure wikilink
{{#ifexist:Media:Template:Infobox element/crystal structure image| [[File:Template:Infobox element/crystal structure image|50px|Actinium has a {{{crystal structure2}}} crystal structure]]}}
{{#if:|{{#if:|
Template:Clear}}}}

}}

2|1}} valign="top" | Magnetic ordering no data
{{{Curie point}}} K
Electrical resistivity Ω·m
Electrical resistivity (0 °C) Ω·m
Electrical resistivity (20 °C) Ω·m
Thermal conductivity 12 W·m−1·K−1
Thermal conductivity  W·m−1·K−1
Thermal diffusivity (300 K)  mm²/s
Thermal expansion µm/(m·K)
Thermal expansion (25 °C) µm·m−1·K−1
Speed of sound m·s−1
Speed of sound (thin rod) (20 °C) m·s−1
Speed of sound (thin rod) (r.t.)  m·s−1
Tensile strength {{{Tensile strength}}} MPa
Young's modulus GPa
Shear modulus GPa
Bulk modulus GPa
Poisson ratio
Mohs hardness
Mohs hardness {{{Mohs hardness 2}}}
Vickers hardness MPa
Brinell hardness MPa
CAS registry number 7440-34-8
Band gap energy at 300 K {{{Band gap}}} eV

}}

colspan=2 style="text-align:center; background-color:#{{#if:{{#switch:actinide alkali metals=FF6666 alkaline earth metals=FFDEAD lanthanides=FFBFFF actinides=FF99CC transition metals=FFC0C0 poor metals=CCCCCC post-transition metal=CCCCCC other metal=CCCCCC metalloids=CCCC99 non-metal|nonmetals|non-metals=A0FFA0 halogens=FFFF99 noble gases=C0FFFF superactinide = D1DDFF eka-superactinide = C6DD9D unknown=E8E8E8

}} }}; color:#{{#if:||{{#switch:solid

gas=008000 liquid=0000FF solid=000000

}} }};" | Most stable isotopes

Main article: Isotopes of actinium
iso NA half-life DM DE (MeV) DP

Template:Elementbox isotopes decay Template:Elementbox isotopes decay3 Template:Elementbox isotopes decay2 {{#if:|

}}

}}

colspan=2 style="text-align:center; background-color:#{{#if:{{#switch:actinide alkali metals=FF6666 alkaline earth metals=FFDEAD lanthanides=FFBFFF actinides=FF99CC transition metals=FFC0C0 poor metals=CCCCCC post-transition metal=CCCCCC other metal=CCCCCC metalloids=CCCC99 non-metal|nonmetals|non-metals=A0FFA0 halogens=FFFF99 noble gases=C0FFFF superactinide = D1DDFF eka-superactinide = C6DD9D unknown=E8E8E8

}} }}; color:#{{#if:||{{#switch:solid

gas=008000 liquid=0000FF solid=000000

}} }};" | Template:Navbar · r

Actinium is a radioactive chemical element with symbol Ac (not to be confused with the abbreviation for an acetyl group) and has the atomic number 89, which was discovered in 1899. It was the first non-primordial radioactive element to be isolated. Polonium, radium and radon were observed before actinium, but they were not isolated until 1902. Actinium gave the name to the actinide series, a group of 15 similar elements between actinium and lawrencium in the periodic table.

A soft, silvery-white radioactive metal, actinium reacts rapidly with oxygen and moisture in air forming a white coating of actinium oxide that prevents further oxidation. As with most lanthanides and actinides, actinium assumes oxidation state +3 in nearly all its chemical compounds. Actinium is found only in traces in uranium ores as the isotope 227Ac, which decays with a half-life of 21.772 years, predominantly emitting beta particles. One tonne of uranium ore contains about 0.2 milligrams of actinium. The close similarity of physical and chemical properties of actinium and lanthanum makes separation of actinium from the ore impractical. Instead, the element is prepared, in milligram amounts, by the neutron irradiation of 226Template:Radium in a nuclear reactor. Owing to its scarcity, high price and radioactivity, actinium has no significant industrial use. Its current applications include a neutron source and an agent for radiation therapy targeting cancer cells in the body.

Contents

History

André-Louis Debierne, a French chemist, announced the discovery of a new element in 1899. He separated it from pitchblende residues left by Marie and Pierre Curie after they had extracted radium. In 1899, Debierne described the substance as similar to titanium<ref>Template:Cite journal</ref> and (in 1900) as similar to thorium.<ref>Template:Cite journal</ref> Friedrich Oskar Giesel independently discovered actinium in 1902<ref>Template:Cite journal</ref> as a substance being similar to lanthanum and called it "emanium" in 1904.<ref>Template:Cite journal</ref> After a comparison of the substances half-lives determined by Debierne<ref>Template:Cite journal</ref>, Hariett Brooks in 1904, and Otto Hahn and Otto Sackur in 1905, Debierne's chosen name for the new element was retained because it had seniority.<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref>

Articles published in the 1970s<ref>Template:Cite journal</ref> and later<ref name="Adloff">Template:Cite journal</ref> suggest that Debierne's results published in 1904 conflict with those reported in 1899 and 1900. This has led some authors to advocate that Giesel alone should be credited with the discovery.<ref>Template:Cite journal</ref> A less confrontational vision of scientific discovery is proposed by Adloff<ref name="Adloff" /> He suggests that hindsight criticism of the early publications should be mitigated by the nascent state of radiochemistry, highlights the prudence of Debierne's claims in the original papers, and notes that nobody can contend that Debierne's substance did not contain actinium. Debierne, who is now considered by the vast majority of historians as the discoverer, lost interest in the element and left the topic. Giesel, on the other hand, can rightfully be credited with the first preparation of radiochemically pure actinium and with the identification of its atomic number 89.

The name actinium originates from the Ancient Greek aktis, aktinos (ακτίς, ακτίνος), meaning beam or ray.<ref name=CRC/> Its symbol Ac is also used in abbreviations of other compounds that have nothing to do with actinium, such as acetyl, acetate<ref>Template:Cite book</ref> and sometimes acetaldehyde.<ref>Template:Cite book</ref>

Properties

Actinium is a soft, silvery-white,<ref name="blueglow"/><ref name=brit>Actinium, in Encyclopædia Britannica, 15th edition, 1995, p. 70</ref> radioactive, metallic element. Its estimated shear modulus is similar to that of lead.<ref>Frederick Seitz, David Turnbull Solid state physics: advances in research and applications, Academic Press, 1964 ISBN 0-12-607716-9 pp. 289–291</ref> Owing to its strong radioactivity, actinium glows in the dark with a pale blue light, which originates from the surrounding air ionized by the emitted energetic particles.<ref>Template:Cite book</ref> Actinium has similar chemical properties as lanthanum and other lanthanides, and therefore these elements are difficult to separate when extracting from uranium ores. Solvent extraction and ion chromatography are commonly used for the separation.<ref>Template:Cite journal</ref>

The first element of the actinides, actinium gave the group its name, much as lanthanum had done for the lanthanides. The group of elements is more diverse than the lanthanides and therefore it was not until 1945 that Glenn T. Seaborg proposed the most significant change to Mendeleev's periodic table, by introducing the actinides.<ref>Template:Cite journal</ref>

Actinium reacts rapidly with oxygen and moisture in air forming a white coating of actinium oxide that prevents further oxidation.<ref name="blueglow">Template:Cite journal</ref> As with most lanthanides and actinides, actinium exists in the oxidation state +3, and the Ac3+ ions are colorless in solutions.<ref name=bse/> The oxidation state +3 originates from the 6d17s2 electronic configuration of actinium, that is it easily donates 3 electrons assuming a stable closed-shell structure of the noble gas radon.<ref name=brit/> The oxidation state +2 is only known for actinium dihydride (AcH2).

Chemical compounds

Only a limited number of actinium compounds are known including AcF3, AcCl3, AcBr3, AcOF, AcOCl, AcOBr, Ac2S3, Ac2O3 and AcPO4. Except for AcPO4, they are all similar to the corresponding lanthanum compounds and contain actinium in the oxidation state +3.<ref name=bse/><ref>Template:Cite journal</ref> In particular, the lattice constants of the analogous lanthanum and actinium compounds differ by only a few percent.<ref name=j2/>

Here a, b and c are lattice constants, No is space group number and Z is the number of formula units per unit cell. Density was not measured directly but calculated from the lattice parameters.

Oxides

Actinium oxide (Ac2O3) can be obtained by heating the hydroxide at 500 °C or the oxalate at 1100 °C, in vacuum. It crystal lattice is isotypic with the oxides of most trivalent rare-earth metals.<ref name=j2/>

Halides

Actinium trifluoride can be produced either in solution or in solid reaction. The former reaction is carried out at room temperature, by adding hydrofluoric acid to a solution containing actinium ions. In the latter method, actinium metal is treated with hydrogen fluoride vapors at 700 °C in an all-platinum setup. Treating actinium trifluoride with ammonium hydroxide at 900–1000 °C yields oxyfluoride AcOF. Whereas lanthanum oxyfluoride can be easily obtained by burning lanthanum trifluoride in air at 800 °C for an hour, similar treatment of actinium trifluoride yields no AcOF and only results in melting of the initial product.<ref name=j2/><ref name=m87>Meyer, pp. 87–88</ref>

AcF3 + 2 NH3 + H2O → AcOF + 2 NH4F

Actinium trichloride is obtained by reacting actinium hydroxide or oxalate with carbon tetrachloride vapors at temperatures above 960 °C. Similar to oxyfluoride, actinium oxychloride can be prepared by hydrolyzing actinium trichloride with ammonium hydroxide at 1000 °C. However, in contrast to the oxyfluoride, the oxychloride could well be synthesized by igniting a solution of actinium trichloride in hydrochloric acid with ammonia.<ref name=j2/>

Reaction of aluminium bromide and actinium oxide yields actinium tribromide:

Ac2O3 + 2 AlBr3 → 2 AcBr3 + Al2O3

and treating it with ammonium hydroxide at 500 °C results in the oxybromide AcOBr.<ref name=j2/>

Other compounds

Actinium hydride was obtained by reduction of actinium trichloride with potassium at 300 °C, and its structure was deduced by analogy with the corresponding LaH2 hydride. The source of hydrogen in the reaction was uncertain.<ref>Meyer, p. 43</ref>

Mixing monosodium phosphate (NaH2PO4) with a solution of actinium in hydrochloric acid yields white-colored actinium phosphate hemihydrate (AcPO4·0.5H2O), and heating actinium oxalate with hydrogen sulfide vapors at 1400 °C for a few minutes results in a black actinium sulfide Ac2S3. It may possibly be produced by acting with a mixture of hydrogen sulfide and carbon disulfide on actinium oxide at 1000 °C.<ref name=j2/>

Isotopes

Template:Main Naturally occurring actinium is composed of one radioactive isotope; Template:Chem. Thirty-six radioisotopes have been identified, the most stable being Template:Chem with a half-life of 21.772 years, Template:Chem with a half-life of 10.0 days and Template:Chem with a half-life of 29.37 hours. All remaining radioactive isotopes have half-lives that are less than 10 hours and the majority of them have half-lives shorter than one minute. The shortest-lived known isotope of actinium is Template:Chem (half-life of 69 nanoseconds) which decays through alpha decay and electron capture. Actinium also has two meta states.<ref name ="nubas">Template:Cite journal</ref>

Purified Template:Chem comes into equilibrium with its decay products at the end of 185 days. It decays according to its 21.773-year half-life emitting mostly beta (98.8%) and some alpha particles (1.2%);<ref name=bse>Actinium, Great Soviet Encyclopedia (in Russian)</ref> the successive decay products are part of the actinium series. Owing to the low available amounts, low energy of its beta particles (46 keV) and low intensity of alpha radiation, Template:Chem is difficult to detect directly by its emission and it is therefore traced via its decay products.<ref name=bse/> The isotopes of actinium range in atomic weight from 206 u (Template:Chem) to 236 u (Template:Chem).<ref name ="nubas"/>

Isotope Production Decay Half-life
221Ac 232Th(d,9n)225Pa(α)→221Ac α 52 ms
222Ac 232Th(d,8n)226Pa(α)→222Ac α 5.0 s
223Ac 232Th(d,7n)227Pa(α)→223Ac α 2.1 min
224Ac 232Th(d,6n)228Pa(α)→224Ac α 2.78 hours
225Ac 232Th(n,γ)233Th(β)→233Pa(β)→233U(α)→229Th(α)→225Ra(β)225Ac α 10 days
226Ac 226Ra(d,2n)226Ac α, β
electron capture
29.37 hours
227Ac 235U(α)→231Th(β)→231Pa(α)→227Ac α, β 21.77 years
228Ac 232Th(α)→228Ra(β)→228Ac β 6.15 hours
229Ac 228Ra(n,γ)229Ra(β)→229Ac β 62.7 min
230Ac 232Th(d,α)230Ac β 122 s
231Ac 232Th(γ,p)231Ac β 7.5 min
232Ac 232Th(n,p)232Ac β 119 s

Occurrence and synthesis

File:Uraninite-39029.jpg
Uraninite ores have elevated concentrations of actinium.

Actinium is found only in traces in uranium ores as 227Ac – one tonne of ore contains about 0.2 milligrams of actinium.<ref name=j1>Template:Cite journal</ref><ref name=g946>Template:Greenwood&Earnshaw2nd</ref> The actinium isotope 227Ac is a transient member of the actinium series decay chain, which begins with the parent isotope 235U (or 239Pu) and ends with the stable lead isotope 207Pb. Another actinium isotope (225Ac) is transiently present in the neptunium series decay chain, beginning with 237Np (or 233U) and ending with thallium (205Tl) and near-stable bismuth (209Bi).

The low natural concentration, and the close similarity of physical and chemical properties to those of lanthanum and other lanthanides, which are always abundant in actinium-bearing ores, render separation of actinium from the ore impractical, and complete separation was never achieved.<ref name=j2>Template:Cite journal</ref> Instead, actinium is prepared, in milligram amounts, by the neutron irradiation of 226Template:Radium in a nuclear reactor.<ref name=g946/><ref>Template:Cite book</ref>

Failed to parse (Cannot write to or create math temp directory): \mathrm{^{226}_{\ 88}Ra\ +\ ^{1}_{0}n\ \longrightarrow \ ^{227}_{\ 88}Ra\ \xrightarrow[42.2 \ min]{\beta^-} \ ^{227}_{\ 89}Ac}


The reaction yield is about 2% of the radium weight. 227Ac can further capture neutrons resulting in small amounts of 228Ac. After the synthesis, actinium is separated from radium and from the products of decay and nuclear fusion, such as thorium, polonium, lead and bismuth. The extraction can be performed with thenoyltrifluoroacetone-benzene solution from an aqueous solution of the radiation products, and the selectivity to a certain element is achieved by adjusting the pH (to about 6.0 for actinium).<ref name=j1/> An alternative procedure is anion exchange with an appropriate resin in nitric acid, which can result in a separation factor of 1,000,000 for radium and actinium vs. thorium in a two-stage process. Actinium can then be separated from radium, with a ratio of about 100, using a low cross-linking cation exchange resin and nitric acid as eluant.<ref name=sep/>

225Ac was first produced artificially at the Institute for Transuranium Elements (ITU) in Germany using a cyclotron and at St George Hospital in Sydney using a linac in 2000.<ref>Template:Cite journal</ref> This rare isotope has potential applications in radiation therapy and is most efficiently produced by bombarding a radium-226 target with 20–30 MeV deuterium ions. This reaction also yields 226Ac which however decays with a half-life of 29 hours and thus does not contaminate 225Ac.<ref>Russell, Pamela J.; Jackson, Paul and Kingsley, Elizabeth Anne Prostate cancer methods and protocols, Humana Press, 2003, ISBN 0-89603-978-1, p. 336</ref>

Actinium metal has been prepared by the reduction of actinium fluoride with lithium vapor in vacuum at a temperature between 1100 and 1300 °C. Higher temperatures resulted in evaporation of the product and lower ones lead to an incomplete transformation. Lithium was chosen among other alkali metals because its fluoride is most volatile.<ref name=CRC>Hammond, C. R. The Elements in Template:RubberBible86th</ref><ref name="blueglow"/>

Applications

Owing to its scarcity, high price and radioactivity, actinium currently has no significant industrial use.<ref name=CRC/>

227Ac is highly radioactive and was therefore studied for use as an active element of radioisotope thermoelectric generators, for example in spacecraft. The oxide of 227Ac pressed with beryllium is also an efficient neutron source with the activity exceeding that of the standard americium-beryllium and radium-beryllium pairs.<ref name=b1>Russell, Alan M. and Lee, Kok Loong Structure-property relations in nonferrous metals, Wiley, 2005, ISBN 0-471-64952-X, pp. 470–471</ref> In all those applications, 227Ac (a beta source) is merely a progenitor which generates alpha-emitting isotopes upon its decay. Beryllium captures alpha particles and emits neutrons owing to its large cross-section for the (α,n) nuclear reaction:

Failed to parse (Cannot write to or create math temp directory): \mathrm{^{9}_{4}Be\ +\ ^{4}_{2}He\ \longrightarrow \ ^{12}_{\ 6}C\ +\ ^{1}_{0}n\ +\ \gamma}


The 227AcBe neutron sources can be applied in a neutron probe – a standard device for measuring the quantity of water present in soil, as well as moisture/density for quality control in highway construction.<ref>Majumdar, D. K. Irrigation Water Management: Principles and Practice, 2004 ISBN 81-203-1729-7 p. 108</ref><ref>Chandrasekharan, H. and Gupta, Navindu Fundamentals of Nuclear Science – Application in Agriculture, 2006 ISBN 81-7211-200-9 pp. 202 ff</ref> Such probes are also used in well logging applications, in neutron radiography, tomography and other radiochemical investigations.<ref>Template:Cite journal</ref>

File:DOTA polyaminocarboxylic acid.png
Chemical structure of the DOTA carrier for 225Ac in radiation therapy.

225Ac is applied in medicine to produce 213Template:Bismuth in a reusable generator<ref name=sep>Template:Cite journal</ref> or can be used alone as an agent for radiation therapy, in particular targeted alpha therapy (TAT). This isotope has a half-life of 10 days that makes it much more suitable for radiation therapy than 213Bi (half-life 46 minutes). Not only 225Ac itself, but also its decay products emit alpha particles which kill cancer cells in the body. The major difficulty with application of 225Ac was that intravenous injection of simple actinium complexes resulted in their accumulation in the bones and liver for a period of tens of years. As a result, after the cancer cells were quickly killed by alpha particles from 225Ac, the radiation from the actinium and its decay products might induce new mutations. To solve this problem, 225Ac was bound to a chelating agent, such as citrate, ethylenediaminetetraacetic acid (EDTA) or diethylene triamine pentaacetic acid (DTPA). This reduced actinium accumulation in the bones, but the excretion from the body remained slow. Much better results were obtained with such chelating agents as HEHA<ref>Template:Cite journal</ref> or DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) coupled to trastuzumab, a monoclonal antibody that interferes with the HER2/neu receptor. The latter delivery combination was tested on mice and proved to be effective against leukemia, lymphoma, breast, ovarian, neuroblastoma and prostate cancers.<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref><ref>Template:Cite journal</ref>

The medium half-life of 227Ac (21.77 years) makes it very convenient radioactive isotope in modeling the slow vertical mixing of oceanic waters. The associated processes cannot be studied with the required accuracy by direct measurements of current velocities (of the order 50 meters per year). However, evaluation of the concentration depth-profiles for different isotopes allows estimating the mixing rates. The physics behind this method is as follows: oceanic waters contain homogeneously dispersed 235U. Its decay product, 231Pa, gradually precipitates to the bottom, so that its concentration first increases with depth and then stays nearly constant. 231Pa decays to 227Ac; however, the concentration of the latter isotope does not follow the 231Pa depth profile, but instead increases toward the sea bottom. This occurs because of the mixing processes which raise some additional 227Ac from the sea bottom. Thus analysis of both 231Pa and 227Ac depth profiles allows to model the mixing behavior.<ref>Template:Cite journal</ref><ref>Template:Cite journal</ref>

Precautions

227Ac is highly radioactive and experiments with it are carried out in a specially designed laboratory equipped with a glove box and radiation shielding. When actinium trichloride is administered intravenously to rats, about 33% of actinium is deposited into the bones and 50% into the liver. Its toxicity is comparable to, but slightly lower than that of americium and plutonium.<ref>Template:Cite journal</ref>

See also

Template:Subject bar

References

Template:Reflist

Bibliography

External links

Template:Compact periodic table Template:Use dmy datesTemplate:Link GA Template:Link FA

af:Aktinium am:አክቲኒየም ar:أكتينيوم ast:Actiniu az:Aktinium bn:অ্যাক্টিনিয়াম be:Актыній be-x-old:Актын bg:Актиний bs:Aktinij ca:Actini cv:Актини cs:Aktinium co:Attiniu cy:Actiniwm da:Actinium de:Actinium et:Aktiinium el:Ακτίνιο (στοιχείο) es:Actinio eo:Aktinio eu:Aktinio fa:اکتینیم hif:Actinium fr:Actinium fur:Atini ga:Achtainiam gv:Aghtinnium gl:Actinio xal:Актиниум ko:악티늄 hy:Ակտինիում hi:एजातु hr:Aktinij io:Aktiniumo id:Aktinium ia:Actinium it:Attinio he:אקטיניום jv:Aktinium kk:Актиний kv:Актиний ht:Aktiniòm mrj:Актиний la:Actinium lv:Aktīnijs lb:Actinium lt:Aktinis lij:Attinio jbo:jinmrtaktini hu:Aktínium ml:ആക്റ്റിനിയം mr:एक्टिनियम ms:Aktinium mn:Актини my:အက်တီနီယမ် nl:Actinium new:एक्टिनियम ja:アクチニウム no:Actinium nn:Actinium oc:Actini pnb:ایکٹینیم nds:Actinium pl:Aktyn pt:Actínio ro:Actiniu qu:Aktinyu rue:Актіній ru:Актиний sah:Актиниум stq:Aktinium sq:Aktiniumi scn:Attiniu simple:Actinium sk:Aktínium sl:Aktinij sr:Актинијум sh:Aktinijum fi:Aktinium sv:Aktinium tl:Aktinyo ta:அக்டினியம் th:แอกทิเนียม tr:Aktinyum uk:Актиній ur:عیکٹنیئم ug:ئاكتىنىي vep:Aktinii (himine element) vi:Actini war:Actinyo yo:Àktíníọ̀m zh-yue:錒

zh:锕
Views
Personal tools
Navigation
EditThis.info tools
Toolbox
Other sites